# The Multiple Linear Regression Analysis in SPSS

This example is based on the FBI’s 2006 crime statistics. Particularly we are interested in the relationship between size of the state, various property crime rates and the number of murders in the city. It is our hypothesis that less violent crimes open the door to violent crimes. We also hypothesize that even we account for some effect of the city size by comparing crime rates per 100,000 inhabitants that there still is an effect left.

First we need to check whether there is a linear relationship between the independent variables and the dependent variable in our multiple linear regression model. To do this, we can check scatter plots. The scatter plots below indicate a good linear relationship between murder rate and burglary and motor vehicle theft rates, and only weak relationships between population and larceny.

### Regression help?

Option 1: User-friendly Software

Transform raw data to written interpreted results in seconds.

Option 2: Professional Statistician

Collaborate with a statistician to complete and understand your results.

Secondly, we need to check for multivariate normality. We can do this by checking normal Q-Q plots of each variable. In our example, we find that multivariate normality might not be present in the population data (which is not surprising since we truncated variability by selecting the 70 biggest cities).

We will ignore this violation of the assumption for now, and conduct the multiple linear regression analysis. Multiple linear regression is found in SPSS in Analyze/Regression/Linear…

Edit your research questions and null/alternative hypotheses

Write your data analysis plan; specify specific statistics to address the research questions, the assumptions of the statistics, and justify why they are the appropriate statistics; provide references

Justify your sample size/power analysis, provide references

Explain your data analysis plan to you so you are comfortable and confident

Quantitative Results Section (Descriptive Statistics, Bivariate and Multivariate Analyses, Structural Equation Modeling, Path analysis, HLM, Cluster Analysis)

Clean and code dataset

Conduct descriptive statistics (i.e., mean, standard deviation, frequency and percent, as appropriate)

Conduct analyses to examine each of your research questions

Write-up results

Provide APA 7th edition tables and figures

Explain Chapter 4 findings

Ongoing support for entire results chapter statistics

Please call 727-442-4290 to request a quote based on the specifics of your research, schedule using the calendar on this page, or email [email protected]