Multivariate analysis of covariance (MANCOVA) is a statistical technique that is the extension of analysis of covariance (ANCOVA). Basically, it is the multivariate analysis of variance (MANOVA) with a covariate(s).). In MANCOVA, we assess for statistical differences on multiple continuous dependent variables by an independent grouping variable, while controlling for a third variable called the covariate; multiple covariates can be used, depending on the sample size. Covariates are added so that it can reduce error terms and so that the analysis eliminates the covariates’ effect on the relationship between the independent grouping variable and the continuous dependent variables.
Questions answered:
Do the various school assessments vary by grade level after controlling for gender?
Do the rates of graduation among certain state universities differ by degree type after controlling for tuition costs?
Which diseases are better treated, if at all, by either X drug or Y drug after controlling for length of disease and participant age?
Aligning theoretical framework, gathering articles, synthesizing gaps, articulating a clear methodology and data plan, and writing about the theoretical and practical implications of your research are part of our comprehensive dissertation editing services.
Assumptions:
In multivariate analysis of covariance (MANCOVA), all assumptions are the same as in MANOVA, but one more additional assumption is related to covariate:
Key concepts and terms:
*For assistance with conducting a MANCOVA or other quantitative analyses click here.
Resources
Bray, J. H., & Maxwell, S. E. (1985). Multivariate analysis of variance. Newbury Park, CA: Sage Publications.
de Leeuw, J. (1988). Multivariate analysis with linearizable regressions. Psychometrika, 53(4), 437-454.
Gill, J. (2001). Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage Publications.
Hand, D. J., & Taylor, C. C. (1987). Multivariate analysis of variance and repeated measures. London: Chapman and Hall.
Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis versus multiple univariate analyses Psychological Bulletin, 105(2), 302-308.
Huynh, H., & Mandeville, G. K. (1979). Validity conditions in a repeated measures design. Psychological Bulletin, 86(5), 964-973.
Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika, 57(4), 539-565.
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized liner models. Journal of the Royal Statistical Society, 135, 370-384.
Nichols, D. P. (1993). Interpreting MANOVA parameter estimates. SPSS Keywords, 50, 8-14.
Olson, C. L. (1976). On choosing a test statistic in multivariate analyses of variance. Psychological Bulletin, 83(4), 579-586.
Powell, R. S., & Lane, D. M. (1979). CANCOR: A general least-squares program for univariate and multivariate analysis of variance and covariance. Behavior Research Methods & Instrumentation, 11(1), 87-89.
Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52(3), 333-343.
Smith, H. F. (1958). A multivariate analysis of covariance. Biometrics, 14, 107-127.
Related Pages: