Hypothesis testing was introduced by Ronald Fisher, Jerzy Neyman, Karl Pearson and Pearson’s son, Egon Pearson. Hypothesis testing is a statistical method that is used in making statistical decisions using experimental data. Hypothesis Testing is basically an assumption that we make about the population parameter.
Key terms and concepts
In statistical analysis, we have to make decisions about the hypothesis. These decisions include deciding if we should accept the null hypothesis or if we should reject the null hypothesis. Every test in hypothesis testing produces the significance value for that particular test. In Hypothesis testing, if the significance value of the test is greater than the predetermined significance level, then we accept the null hypothesis. If the significance value is less than the predetermined value, then we should reject the null hypothesis. For example, if we want to see the degree of relationship between two stock prices and the significance value of the correlation coefficient is greater than the predetermined significance level, then we can accept the null hypothesis and conclude that there was no relationship between the two stock prices. However, due to the chance factor, it shows a relationship between the variables.
Related Pages:
To Reference this Page: Statistics Solutions. (2013). Hypothesis Testing . Retrieved from https://www.statisticssolutions.com/academic-solutions/resources/directory-of-statistical-analyses/hypothesis-testing/