Results

ANCOVA

Introduction

An analysis of covariance (ANCOVA) was conducted to determine whether there were significant differences in Weight by Side and Level while controlling for Height.

Assumptions

Normality. The assumption of normality was assessed by plotting the quantiles of the model residuals against the quantiles of a Chi-square distribution, also called a Q-Q scatterplot (DeCarlo, 1997). For the assumption of normality to be met, the quantiles of the residuals must not strongly deviate from the theoretical quantiles. Strong deviations could indicate that the parameter estimates are unreliable. Figure 1 presents a Q-Q scatterplot of model residuals.

Figure 1

$Q-Q$ scatterplot for normality of the residuals for the regression model.

Homoscedasticity. Homoscedasticity was evaluated by plotting the residuals against the predicted values (Bates et al., 2014; Field, 2017; Osborne \& Walters, 2002). The assumption of homoscedasticity is met if the points appear randomly distributed with a mean of zero and no apparent curvature. Figure 2 presents a scatterplot of predicted values and model residuals.

Figure 2

Residuals scatterplot testing homoscedasticity

Outliers. To identify influential points, Studentized residuals were calculated and the absolute values were plotted against the observation numbers (Field, 2017; Pituch \& Stevens, 2015). Studentized residuals are calculated by dividing the model residuals by the estimated residual standard deviation. An observation with a Studentized residual greater than 3.09 in absolute value, the 0.999 quantile of a t distribution with 2763 degrees of freedom, was considered to have significant influence on the results of the model. Figure 3 presents the Studentized residuals plot of the observations. Observation numbers are specified next to each point with a Studentized residual greater than 3.09.

Figure 3

Studentized residuals plot for outlier detection

Homogeneity of regression slopes. The assumption for homogeneity of regression slopes was assessed by rerunning the ANCOVA, but this time including interaction terms between each independent variable and covariate (Field, 2017; Pituch \& Stevens, 2015). If the model with the covariate interaction terms explains significantly more variance than the original ANCOVA model, then there were significant interactions between the covariates and independent variables. The model with covariate-independent variable interactions explained significantly more variance for Weight, $F(6,2750)=6.62, p<.001$ than the original model. This implies that one or more of the covariates had significant interactions with the independent variables and violated the homogeneity of regression slopes assumption.

Covariate-IV independence. Each independent variable and covariate must be independent of each other (Miller \& Chapman, 2001). An ANOVA was conducted for each pair of numeric covariates and independent variables to assess independence (Field, 2017). There were significant models for the following pairs of independent variables and covariates based on an alpha of .05 , indicating the assumption of independence between covariates and independent
variables was not met (pairs are formatted as covariate-IV): Height-Side $(F(2,2757)=51.68, p<$.001). All remaining covariate-IV pairs were not significant and met the assumption.

Results

The results of the ANCOVA were significant, $F(7,2,756)=400.78, p<.001$, indicating significant differences among the values of Side and Level (Table 1). The main effect for Side was significant, $F(2,2,756)=28.43, p<.001, \eta_{p}^{2}=0.02$, indicating there were significant differences in Weight by Side levels. The main effect for Level was significant, $F(4,2,756)=$ $8.81, p<.001, \eta_{p}^{2}=0.01$, indicating there were significant differences in Weight by Level levels. The means and standard deviations are presented in Table 2.

Table 1

Analysis of Variance Table for Weight by Side and Level

Term	$S S$	$d f$	F	p	$\eta_{\mathrm{p}}{ }^{2}$
Side	$60,121.89$	2	28.43	$<.001$	0.02
Level	$37,265.00$	4	8.81	$<.001$	0.01
Height	2.74×10^{6}	1	$2,593.34$	$<.001$	0.48
Residuals	2.91×10^{6}	2756			

Figure 4

Mean value of Weight by the levels of Side with 95.00% CI Error Bars

Figure 5

Mean value of Weight by the levels of Level with 95.00\% CI Error Bars

Table 2
Marginal Means, Standard Error, and Sample Size for Weight by Side and Level Controlling for Height

Combination	Marginal Means	$S E$	n
OFF : 5-8 Yrs	248.19	1.52	263
DEF : 5-8 Yrs	250.56	1.49	293
ST : 5-8 Yrs	226.41	3.30	24
OFF : Rookie	238.77	1.41	322
DEF : Rookie	241.14	1.41	331
ST : Rookie	216.98	3.26	30
OFF $: 1-4$ Yrs	245.66	1.10	662
DEF : 1-4 Yrs	248.04	1.13	599
ST : 1-4 Yrs	223.88	3.20	32
OFF : 9-12 Yrs	249.20	2.60	79
DEF : 9-12 Yrs	251.58	2.61	71
ST : 9-12 Yrs	227.42	3.75	19
OFF $: 13+$ Yrs	238.37	5.30	18
DEF : 13+ Yrs	240.75	5.32	11
ST : 13+ Yrs	216.59	5.71	10

Post-hoc

Estimated marginal mean contrasts were calculated to examine the differences between the level combinations using Tukey comparisons based on an alpha of .05 . For the main effect of Side, the mean of Weight for OFF ($M=244.04, S D=51.55$) was significantly larger than for ST ($M=222.26, S D=33.22$) , $p<.001$. For the main effect of Side, the mean of Weight for DEF (M $=246.41, S D=51.58)$ was significantly larger than for $\mathrm{ST}(M=222.26, S D=33.22), p<.001$. For the main effect of Level, the mean of Weight for 5-8 Yrs ($M=241.72, S D=39.33$) was significantly larger than for Rookie $(M=232.30, S D=40.32), p<.001$. For the main effect of Level, the mean of Weight for Rookie ($M=232.30, S D=40.32$) was significantly smaller than for 1-4 Yrs $(M=239.19, S D=47.72), p<.001$. For the main effect of Level, the mean of Weight for Rookie ($M=232.30, S D=40.32$) was significantly smaller than for 9-12 Yrs ($M=$ 242.73, $S D=33.75$), $p=.002$. No other significant differences were found.

References

Bates, D., Mächler, M., Bolker, B., \& Walker, S. (2014). Fitting linear mixed-effects models using lme4: arXiv preprint arXiv, Journal of Statistical Software. https://doi.org/10.18637/jss.v067.io1

DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292307. https://doi.org/10.1037/1082-989X.2.3.292

Field, A. (2017). Discovering statistics using IBM SPSS statistics: North American edition. Sage Publications

Intellectus Statistics [Online computer software]. (2023). Intellectus Statistics. https://statistics.intellectus360.com

Miller, G. A., \& Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110(1), 40. https://doi.org/10.1037//0021-843x.110.1.40

Osborne, J., \& Waters, E. (2002). Four assumptions of multiple regression that researchers should always test. Practical Assessment, Research \& Evaluation, 8(2), 1-9.

Pituch, K. A., \& Stevens, J. P. (2015). Applied multivariate statistics for the social sciences (6th ed.). Routledge Academic. https://doi.org/10.4324/9781315814919

Glossaries

ANCOVA (Analysis of Covariance)

An ANCOVA examines the influence of an independent variable on a dependent variable while removing the effect of the covariate factor(s). ANCOVA first conducts a regression of the independent variable (i.e., the covariate) on the dependent variable. The residuals (the unexplained variance in the regression model) are then subject to an ANOVA. Thus the ANCOVA tests whether the independent variable still influences the dependent variable after the influence of the covariate(s) has been removed. The One-Way ANCOVA can include more than one covariate. If the ANCOVA model has more than one covariate, it is possible to calculate the one-way ANCOVA using contrasts just like in the ANOVA to identify the influence of each covariate.

Fun Fact! Controlling for covariates can not only help eliminate possible confounds from a study, but it also decreases the amount of unexplained (or "error") variability in the analysis. Reducing error variability increases the chances of finding differences between groups.

Covariate: A variable that may be significantly related to the dependent (outcome) variable; also referred to as a control variable.

Degrees of Freedom ($d f$): Refers to the number of values used to compute a statistic; an F-test has two values for $d f$: the first is determined by the number of groups being compared, and the second is determined by the number of observations in the sample; used with the F-statistic to determine the p-value.
\boldsymbol{F} Ratio (F): The ratio of explained variance to error variance; used with the two $d f$ values to determine the p-value.

Normality: Refers to the distribution of the data. The assumption is that the data follows the bell-shaped curve.

Outlier: A data point that is abnormally distant from a set of observations.
\boldsymbol{p}-value: The probability of obtaining the observed results if the null hypothesis (no differences in the dependent variables by the independent variable) is true.

Residuals: Refers to the difference between the predicted value for the dependent variable and the actual value of the dependent variable.

Studentized Residuals: Residuals that are scaled by diving the each residual by the estimated standard deviation of the residuals.

Type I Error: A variable that may be significantly related to the dependent (outcome) variable; also referred to as a control variable.

Raw Output

Analysis of Covariance Table for Weight by Side and Level While Controlling for Height

Included Variables:
Weight, Side, Level, and Height
Sample Size (Complete Cases):
$\mathrm{N}=2764$
Check if the Covariates Influence the DV:
Relationship between Weight and Height:

Term	SS	df	F	p
Height	2.866×10^{6}	1	$2,625.991$	0.00000
Residuals	3.015×10^{6}	2762		

Homogeneity of Regression Slopes ANCOVA Results:

Model	Residual SS	SS	df num	df den	F	p
Original Model	2.91×10^{6}			2,756		
Interaction Model	2.87×10^{6}	$41,488.89$	6	2,750	6.62	.0000006

Covariate-IV Independence

Covariate	IV	df	F	p
Height	Side	$(2,2757)$	51.684	9.215×10^{-23}
Height	Level	$(4,2757)$	0.378	0.824

ANOVA Results:

Term	SS	df	F	p	$\eta_{\mathrm{p}}{ }^{2}$
Side	$60,121.893$	2	28.426	6.032×10^{-13}	0.0202
Level	$37,264.997$	4	8.809	4.586×10^{-07}	0.0126
Height	2.743×10^{6}	1	$2,593.338$	0.00000	0.485
Residuals	2.915×10^{6}	2756			

Marginal Means, Standard Error and Sample Size for Weight by Side and Level Controlling for Height:

Combination	Marginal Means	SE	n
OFF : 5-8 Yrs	248.190	1.517	263
DEF : 5-8 Yrs	250.564	1.487	293

ST $: 5-8$ Yrs	226.409	3.304	24
OFF $:$ Rookie	238.765	1.410	322
DEF $:$ Rookie	241.139	1.405	331
ST $:$ Rookie	216.984	3.256	30
OFF $: 1-4$ Yrs	245.663	1.095	662
DEF $: 1-4$ Yrs	248.037	1.130	599
ST $: 1-4$ Yrs	223.882	3.199	32
OFF $: 9-12$ Yrs	249.202	2.601	79
DEF $: 9-12$ Yrs	251.576	2.613	71
ST $: 9-12$ Yrs	227.421	3.748	19
OFF $: 13+$ Yrs	238.372	5.297	18
DEF $: 13+$ Yrs	240.745	5.323	11
ST $: 13+$ Yrs	216.591	5.709	10

Estimated Marginal Mean Contrasts Using Tukey Comparisons:

Contrast	Mean Contrast	SE	df	t	p
OFF - DEF	-2.373	1.287	2756	-1.845	0.155
OFF - ST	21.781	3.215	2756	6.775	0.00000
DEF - ST	24.155	3.208	2756	7.530	0.00000
(5-8 Yrs) - Rookie	9.425	1.837	2756	5.132	3.048×10^{-06}
(5-8 Yrs) - (1-4 Yrs)	2.527	1.627	2756	1.553	0.528
(5-8 Yrs) - (9-12 Yrs)	-1.012	2.852	2756	-0.355	0.997
(5-8 Yrs) - (13+ Yrs)	9.818	5.424	2756	1.810	0.368
Rookie - (1-4 Yrs)	-6.898	1.540	2756	-4.479	7.624×10^{-05}
Rookie - (9-12 Yrs)	-10.437	2.803	2756	-3.724	0.00187
Rookie - (13+ Yrs)	0.393	5.397	2756	0.0728	1.000
(1-4 Yrs) - (9-12 Yrs)	-3.539	2.674	2756	-1.323	0.677
(1-4 Yrs) - (13+ Yrs)	7.291	5.336	2756	1.366	0.649
(9-12 Yrs) - (13+ Yrs)	10.830	5.795	2756	1.869	0.335

